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Context and Scope

= Despite the considerable popularity of deep learning models within the field of artificial
intelligence, recent literature suggests that these networks have a tendency of learning
simple correlations that perform well on a benchmark dataset, instead of more complex
relations that generalize better [1, 3, 4].

= This phenomenon, which is referred to as shortcut learning by [2], makes these models
more sensitive to input perturbation and unseen input contexts.

Article: Super Bowl 50

Paragraph: "Peython Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls. He
is also the oldest quarterback ever to play in a Super Bowl{
at age 3%. The past record was held by John Elway, who
led the Broncos to victory in Super Bowl XXXl at age 38
and is currently Denver’s Executive Vice President of Foot-
ball Operations and General Manager. Quarterback Jeff
Dean hod a jersey number 37 in Champ Bowl XXX{IV."

Question: "What is the name of the guarterbock who was
38 in Super Bowl XXXIIT?"

Original Prediction: John Elway

Prediction under adversary: Jeff Dean

Task for DNN Caption image Recognise object Recognise pneumonia Answer question

Problem Describes green Hallucinates teapot if cer-  Fails on scans from Changes answer if irrelevant
hillside as grazing sheep tain patterns are present new hospitals information is added

Shortcut Uses background to Uses features irrecogni- Looks at hospital token, Only looks at last sentence and
recognise primary object sable to humans not lung ignores context

Figure 1. Shortcut learning. Deep neural networks have a tendency to solve problems by taking shortcuts
instead of learning the intended solution, leading to a lack of generalisation and unintuitive failures [2].

In order to enhance the robustness and interpretability of classifiers, Sauer and Geiger [5]
introduce the idea of a Counterfactual Generative Network (CGN). Using appropriate inductive
biases to disentangle separate components within the input images, this model is capable of
augmenting training data with generated counterfactual images.
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Figure 2. Scope of Reproducibility. In our reproducibility study, our main goal is to verify the three main claims
of the original paper.

Counterfactual Generative Network

S Reproducibility Study of “Counterfactual Generative Networks”

The counterfactual generative network (CGN) decomposes the image generation process into
four indepdent mechanisms (IMs) whose losses are jointly optimized in an end-to-end matter:
the shape mechanism, the texture mechanism, the background mechanism, and the composer.
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Figure 3. CGN architecture. Components with trainable parameters are blue, components with fixed parameters
are green [5]. The dotted lines indicate that the cGAN is only used for training [5].

https.//github.com/danilodegoede/Re-CGN
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Reproducibility Results Results Beyond Original Paper

1. Evaluating Counterfactual Samples l. Improving CGN Training

= We predict digit masks collapse to erronous state during CGN training.

= To verify claim HQC, we qualitatively evaluate counterfactuals generated using CGN models , , , .
= We propose an edge-loss regularizer over predicted masks that improves training.

on MNIST and ImageNet.

Improved Training
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Figure 8. Adding the edge loss significantly improves CGN training on colored MNIST.

(a) Real images (b) Generated Counterfactual Images
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Figure 4. Qualitative Analysis MNIST. Left: Samples from the different MNIST variations. Right: Counterfactuals
generated by the CGN on MNIST variants. Notice that the CGN generates varying shapes, colors, and textures.
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ll. Explanability Analysis

= \We visualize feature space using t-SNE & also visualize class activations using GradCAM.

Shape  Racer Trench coat Turtle Vase Malinois Barrel
Texture Clock Cab Cauliflower Elephant Viper Piggy bank N Trained on original Trgmed on original o Tramed on counterfactuals
Background  Toucan Coral reef Mushroom Alp Spider Ibex - N -
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Figure 5. Qualitative Analysis ImageNet. Counterfactuals generated by the CGN on ImageNet. Figure 9. Feature space visualization of a CNN classifier trained on on colored MNIST variants
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Figure 10. Visualization of GradCAM heatmaps for an example from IN-mini dataset.
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2. Evaluating Loss Ablation

T RERITEE B

= Qur loss ablation study results follow similar trends to those reported in the original paper. i

= However, when disabling the texture loss, we found u,,, . to be 0.4, whereas the original
paper reported a value of 0.9, which is an essential to support claim IBR.

= Nonetheless, we were able to support this claim by performing an additional qualitative
experiment.

l1l. Out-of-distribution Generalization

Lsha.pe Ltext ng Lrec IS 1 Hmask
X 4 4 v 10081859 031 0.2 = We probe classifiers trained on counterfactuals to evaluate out-of-distribution robustness.
v X v v 186.511984 0.41 0.9
Y Y X Y 200911956 0.11 0.1 Model Pretrained  Finetuned IN-mini f+ IN-A {¢  IN-Sketch 1}  IN-Stylized {}
, / /X 1931384 041 03 ResNet-50 IN-1k - 75.580 3.400 24.092 19.218
CGN Ensemble IN-1k IN-mini + CF 56.793 1.387 11.775 17.188
v v v v 156.11130.2 031 0.3
BigGAN (Upper Bound) 202.9 - Figure 11. Comparison of top-1 accuracy of invariant classifier with pretrained ResNet on OOD benchmarks

Figure 6. Loss Ablation Study. We turn off one loss at the time. o _
Key Takeaways and Limitations

3. Evaluating Invariant Classifiers = We largely succeeded in reproducing qualitative & quantiative results from CGN.

= Our additional experiments dig deeper into the utility of counterfactuals to train robust

= To evaluate the invariance in classifier heads on IN-mini, we reproduce the experiment et
classifiers.

regarding shape bias from the original paper.

= Additionally, we replicate the experiment regarding the evaluation of background robustness. o
= For both experiments, we get different numbers than those reported in the original paper. Limitations

Nonetheless the overall trend does support claim ODR. = Since our experiments are on IN-Mini, it is not possible to reproduce the exact numbers.

= Some experimental details are unclear in CGN forcing us to use the default configurations.
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(a) Shape vs. texture. Evaluation of shape
biases of independent classifiers.
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