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Context and Scope

Despite the considerable popularity of deep learning models within the field of artificial

intelligence, recent literature suggests that these networks have a tendency of learning

simple correlations that perform well on a benchmark dataset, instead of more complex

relations that generalize better [1, 3, 4].

This phenomenon, which is referred to as shortcut learning by [2], makes these models

more sensitive to input perturbation and unseen input contexts.

Figure 1. Shortcut learning. Deep neural networks have a tendency to solve problems by taking shortcuts

instead of learning the intended solution, leading to a lack of generalisation and unintuitive failures [2].

In order to enhance the robustness and interpretability of classifiers, Sauer and Geiger [5]

introduce the idea of a Counterfactual Generative Network (CGN). Using appropriate inductive

biases to disentangle separate components within the input images, this model is capable of

augmenting training data with generated counterfactual images.

Figure 2. Scope of Reproducibility. In our reproducibility study, our main goal is to verify the three main claims

of the original paper.

Counterfactual Generative Network

The counterfactual generative network (CGN) decomposes the image generation process into

four indepdent mechanisms (IMs) whose losses are jointly optimized in an end-to-end matter:

the shape mechanism, the texture mechanism, the background mechanism, and the composer.
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Figure 3. CGN architecture. Components with trainable parameters are blue, components with fixed parameters

are green [5]. The dotted lines indicate that the cGAN is only used for training [5].

Reproducibility Results

1. Evaluating Counterfactual Samples

To verify claim HQC, we qualitatively evaluate counterfactuals generated using CGN models

on MNIST and ImageNet.

(a) Real images (b) Generated Counterfactual Images
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Figure 4. Qualitative Analysis MNIST. Left: Samples from the different MNIST variations. Right: Counterfactuals

generated by the CGN on MNIST variants. Notice that the CGN generates varying shapes, colors, and textures.

Figure 5. Qualitative Analysis ImageNet. Counterfactuals generated by the CGN on ImageNet.

2. Evaluating Loss Ablation

Our loss ablation study results follow similar trends to those reported in the original paper.

However, when disabling the texture loss, we found µmask to be 0.4, whereas the original

paper reported a value of 0.9, which is an essential to support claim IBR.

Nonetheless, we were able to support this claim by performing an additional qualitative

experiment.

Figure 6. Loss Ablation Study. We turn off one loss at the time.

3. Evaluating Invariant Classifiers

To evaluate the invariance in classifier heads on IN-mini, we reproduce the experiment

regarding shape bias from the original paper.

Additionally, we replicate the experiment regarding the evaluation of background robustness.

For both experiments, we get different numbers than those reported in the original paper.

Nonetheless the overall trend does support claim ODR.

(a) Shape vs. texture. Evaluation of shape

biases of independent classifiers.

(b) Backgrounds Challenge. Evaluation of robustness

against adversarially chosen backgrounds.

Results Beyond Original Paper

I. Improving CGN Training

We predict digit masks collapse to erronous state during CGN training.

We propose an edge-loss regularizer over predicted masks that improves training.

Figure 8. Adding the edge loss significantly improves CGN training on colored MNIST.

II. Explanability Analysis

We visualize feature space using t-SNE & also visualize class activations using GradCAM.

Figure 9. Feature space visualization of a CNN classifier trained on on colored MNIST variants

Figure 10. Visualization of GradCAM heatmaps for an example from IN-mini dataset.

III. Out-of-distribution Generalization

We probe classifiers trained on counterfactuals to evaluate out-of-distribution robustness.

Figure 11. Comparison of top-1 accuracy of invariant classifier with pretrained ResNet on OOD benchmarks

Key Takeaways and Limitations

We largely succeeded in reproducing qualitative & quantiative results from CGN.

Our additional experiments dig deeper into the utility of counterfactuals to train robust

classifiers.

Limitations

Since our experiments are on IN-Mini, it is not possible to reproduce the exact numbers.

Some experimental details are unclear in CGN forcing us to use the default configurations.
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