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Heuristics: Humans vs. AlphaZero

• Traditional approaches
• Hand-crafted heuristics

• Reinforcement Learning
• Learn heuristics by practicing

Shannon’s chess-playing machine (1949)

Deep Blue Vs. Garry Kasparov (1997)
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Why should you (ICPE) care?

• AlphaZero may solve many games, but its efficiency is
unclear.
• To increase efficiency, optimizations are needed:

1 Add more human knowledge to reduce the design space (game
heuristics/mathematics research);

2 Improve the modeling itself (AI research);
3 Improve training speed (performance engineering).
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A case study: the game of Hive

• Hive: A tile-based strategy game
• Hive is different from already solved games

1 Lack of natural progression
2 Dynamic structure of game states

• Hive lacks a strong computer implementation
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Design space: construction

• Action encoding

1 Absolute coordinate
2 Tile-relative

• Board representation

1 2D: Original, Symmetric, Simple
2 3D: Binary Planes, Hybrid

• NN architecture
• Optimisations

1 Exploit symmetries of Hive
2 Game rule modifications

• Training hyperparameters

Destination: (22, 6)
Tile: Queen Bee (0)
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Tile: Grasshopper 1 (4)

Direction: East (3)

Neighbour: Enemy Queen (0)

The first 3 dimensions already span a
design space of 60 unique configurations
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Design space: exploration

We select ”best” configuration based on playing strength.
• Playing strength estimation

– Challenge: Hard to quantify the strength of a move
– Solution: Compare against other implementations
– Metric of success: Win rate against a random agent

• Experimental set-up

– Train 5 configurations for 4 hours
– Pit every accepted model against the random agent
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Exploration cost

1

1Note: Every line here takes 20 hours. This plot took 100 hours
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Computational cost

• Exploration necessary to find the best configuration

• No rules for ”good” design decisions
• Exploration ultimately means trying all solutions

– This is extremely compute-intensive

• Full exploration of the design space we proposed:

1 Time: 381 node-years
2 Energy: 602.78 MWh

Enough energy for ∼100 Dutch persons for 1 year

Danilo de Goede (UvA) The Cost of RL for Game Engines: The AZ-Hive Case-study September 20, 2023 8 / 9



Conclusion

“AlphaZero is a usable framework to enable self-play reinforcement
learning for a Hive playing engine. However, there are no rules to discern

between good and bad design decisions. Consequently, the cost of
exploring the design space can quickly become prohibitive.”
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Backup slides
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Training infrastructure: building blocks

1 NN: takes a board state s, and produces:
• A policy vector ~p: What moves are probably good?
• A value v ∈ [−1, 1]: Who is winning from this position?

2 MCTS: Finds promising moves by exploring a game tree
• Outputs an ’improved policy vector’ ~π: What moves are good?
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Training infrastructure: core idea

Algorithm 1 Training the NN through self-play
1: procedure selfPlay
2: for iter ← 1 to numIterations do
3: for ep ← 1 to numGames do
4: gameData← playGame(fθ)
5: trainData.append(gameData)

6: fθ,new ← trainNN(trainData) . L = (z − v)2 − ~πT log ~p + c‖θ‖2

7: if fθ,new outperforms fθ then fθ ← fθ,new

8:
9: procedure playGame
10: while !gameEnded(s) do
11: ~π ← MCTS(s, fθ)
12: gameData.append((s, ~π, z))
13: bestAction ∼ ~π
14: s ← playMove(s, bestAction)

15: return gameData
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AZ-Hive Implementation

What do we need for AlphaZero?

• Implementation of the game to explore valid moves

• Communication between the training infrastructure and the
game implementation

Danilo de Goede (UvA) The Cost of RL for Game Engines: The AZ-Hive Case-study September 20, 2023 4 / 24



Competitive, but not the best...

Untrained Random AZ-Hive
(4h)

AZ-Hive
(24h)

MCTS Minimax
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Energy consumption analysis
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Hive: game rules

• First move of both players: place a tile (adjacent)
• Then, players take turns to place or move a tile.

– Newly placed tiles may not be adjacent to any tile of the enemy
– When moving a tile, it may not break the Hive
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Hive: game rules (movement)
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MCTS

Selection rule:

UCT(j) =
wj

nj
+ Cp

√
2 ln n

nj
(1)
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MCTS (AlphaZero)

• Rather than random playouts, we use a NN to guide the search

• Selection rule:

UCTmodified = Q(s, a) + Cp · P(s, a) ·
√∑

b N(s, b)

1 + N(s, a)
(2)

• After some simulations, MCTS outputs a vector ~π s.t.

πa ∝ N(s, a)
1
τ (3)
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Self-play reinforcement learning

• 3 stages:

1 Generate training data through self-play

DT = {(st , ~πt , zt) | t ∈ N} (4)

2 Train the NN using this data

l = (z − v)2 − ~πT log ~p + c‖θ‖2 (5)

3 Pit the new model against its previous iteration
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Representing the Hive as a board
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Invariance under rotation & reflection

The naive solution does not keep adjacency properties of the Hive
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Invariance under rotation & reflection (cont’d)

We can perform a 60 degrees rotation by:

1 Performing a clockwise rotation of 90 degrees

2 Shifting the rows to restore the adjacency properties of the
board
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Neural network architecture

• Convolutional Neural Network (CNN) of either 4, 6, or 8 layers

• Input: The state of a board (depends on board representation)
• Each convolutional block applies the following operations:

1 Convolution (256 filters of size 3× 3 with stride 1)
2 Batch normalisation
3 Rectifier nonlinearity (ReLU) activation function

• The output of the convolutional layers is passed into two
heads:

1 Policy head: 2 fully connected layers + softmax
2 Value head: 2 fully connected layers + Hyperbolic tangent

activation function (tanh)
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Hyperparameters

Hyperparameter name Value of hyperparameter

numIters 20
numEpisodes 100

numMCTSSims 25
updateThreshold 0.5

cpuct 0.8
epochs 10

batchSize 64
numItersForTrainExamplesHistory 20
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Empirical evaluation: Training infrastructure correctness
(SQ1)
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Empirical Analysis: tile-relative
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Empirical Analysis: absolute coordinate (SQ2)
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Empirical Analysis: NN architecture + invariance (SQ2)
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Empirical Analysis: NN architecture + invariance (SQ2)
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Tournament play with traditional approaches

• How does our engine compare against traditional approaches?

• Set up a tournament against Minimax and classic MCTS

• Maintain Elo rating R(·) throughout the tournament

P(A defeats B) =
1

1 + 10celo·(R(B)−R(A))
(6)
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Empirical Analysis: Suitability real-life scenario (SQ4)
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Contributions

• Designed and implemented the training infrastructure

• Developed a Hive-playing engine that learns the game without
any human knowledge

• Defined and partially explored a design space, and analyzed a
subset of the configurations

• Analyzed the performance and usability of our engine in a
real-life scenario
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